SOME PROBLEMS IN HYDRODYNAMIC EXPLOSION
THEORY
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As is well known, the model of an ideal incompressible fluid is used in M. A, Lavrent'ev's cumulative
theory [1] as a model which describes the deformation and flow of certain solids (for example, metals) at high
pressures. This '"incompressibility approach'' was developed further by Lavrent'ev himself [2] in studies in
which he participated [3, 4] and in others employing his concept [5-9]. It developed that with certain addi-
tional assumptions the model of an ideal incompressible liquid could be employed to describe explosions in
soils and rocks. However, practical realization of the results obtained within the framework of this model
meets with difficulties both practical and principle in nature, Among the latter are the infinite energy level
often found in hydrodynamic problems, but difficult to define physically, Among the former difficulties is the
transition from hydrodynamic quantities to physical and mechanical ones, For example, in problems of di-
rected explosion and uniform fractionation [3, 6], one theoretically obtains a certain pulse pressure distribu-
tion on the boundary of the disintegrating volume, Here we must first find the dependence of the momentum on
explosive mass, and then replace the continuous distribution by a discrete one, placing the explosive charges
in boreholes and cartridges of various diameters. Some of these problems can be dealt with empirically,
while others require special study.

1. The Problem of Infinite Energy. Let an infinitely long cylindrical explosive charge of radius r; be
located within an infinite incompressible ideal medium, The flow is described by a point source potential

9 =Alnr+ B, v =3d¢lor = Alr, (1.1)
where A and B are constants,
The energy integral taken over all space
E:‘npSuzrdr (1.2)

N o
becomes infinite,

We will now consider a charge of finite length 2l , located perpendicular to the plane xy with ends lo-
cated at the points z = =, Each infinitesimally small element of this charge dl, having coordinates (0, 0, 1)
creates at an arbitrary point (x, y, z) a potential corresponding to a point charge

de = Cl(z — 1)* + z* 4+ yzj*llzdl, C = const.

Integrating this expression over I from ~l, to +l), we obtain the potential created in the medium by the ex-
tended charge:

V(l —z) 42 +l —z

—~Cla 2= 2?4yt
A V(l —|—z)2-|—r—-l —z
In the central section, i.e,, at z = 0, this expression takes on the form
VET A4,
¢=Cln —————————.
Vl +r ——l

The velocity in the same section
v = 0/0r == — 2CL/r )V r* 41 ,

in the limit I o/T — = coincides with the velocity of an infinite charge (1.1). In the other limiting case r/l,—
© (Cly = const) we obtain an expression for the velocity of a point charge v = const/ r?. We will consider the
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expression for the kinetic energy of a liquid within a layer of unit thickness in the central portion of the
charge:

A 4C2 2 g2
E:=qnp\ 3272 r rdr == 2n Czln—-r“——Ho—
¢ T i et n

Q

T

o
The constant C is defined from the condition

@ = —Plp at r=rg, gz = 0.
. .

Here ¥ = lim - s pdt is the so-called pulse pressure (see [8]),
P00, T80 4

P Vitith
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whence at lo/ r, > 1 we have, approximately,

2] 2
= — P/201ln 2 E = nP¥pln - (1.3)
7o ' To

If we consider the flow in a ring rj< r = Ry, then instead of Eq, (1.1) we obtain

r

In— .
3 — —
Q= 2 9., such that ¢ = P/p,» T o
P "o 0 = R,
In 7 ! 0
o A
Calculating integral (1.2) in the interval from r; to Rj;, we obtain
R
£ — (nPYg) (1/ln r—°> (1.4)
0

Comparing this to Eq. (1.3), we see that the radius of such a ring is simply equal to the charge length 2I,. As
is evident from Egs. (1.3), (1.4), the energy is finite if [,/r, is finite. In practice the charge length 2/, is al-
ways finite. Even at very long charge lengths, a limitation is imposed on 2[, by the finite detonation rate. If
we denote by t, the cavity expansion time, i.e., the time at which the explosive's work is completed, then to
estimate Zlo we may use the relationship 2l0 ~ Dts, where D is the detonation rate.

Thus, the paradox of infinite energy is resolved from the physical viewpoint: one can use the concepts of
the potential of a planar source for determination of the velocity fields and other quantities, without consider-
ing the formal divergence of integral (1.2).

2. Explosion with Ejection. Let a concentrated charge with energy E be located at a depth h from the
free surface, which coincides with the plane xy. We must determine the initial velocity field developed in the
ground after detonation of such a charge.

The action of the charge is replaced by a source of intensity m;. The geometry of the initial velocity
field is defined by the potential

mg 1 1.

T [ Vietrm+r Ve-m+ rzl'

The initial velocity field profile on the ground surface v =9¢/8z at z = 0 has the form

v(r)=

ré—= 12_‘__ yZ’

mgh
2n (F® -+ B7)3/2 "

The edge of the ejected cone is defined by the additional condition v (rx) = cx, where cx is the critical velocity
value characteristic of the given soil, From this condition we have

my = 2mcgh® (1 + n%)372, (2.1)
where n = r+/h is the ejection index,

We must now find the relationship between m, and the energy E, which is usually done from energy con-
siderations [8]. The kinetic energy of the liquid is calculated and equated to some fraction of the charge energy
E. It can easily be shown that such an approach is, in general, invalid, since the fraction of the explosive energy
expended in the ejection must depend on the depth at which the charge is located. At a relatively great depth
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this fraction must equal zero, since an ejection does not occur. The same is true of the value m,. Thus, m,
must decrease with increase in h, and obviously, must increase with increase in E. From dimensionality con-
gsiderations we obtain the fundamental relationship

my = kE/pcyh, k= const. (2.2)
Substituting this expression in Eq. (2.1), we obtain
E = Kpclh3{0.5 (1 + n?)P32, K = const. (2.3)

Here the function of the ejection index f(n) = [0.5(1 + n?)]%?2 is normalized to unity at n = 1, just as in Bores-
kov's expression

E = Knh¥fy(n), fi(n) = 0.4 + 0.6n (2.4)
At large values of n the functions f(n) and f,(n) are of one and the same order, n?
tions of n obtained previously in [8].

, in contrast to the func-

At high charge position depths, when a significant role is played by the force of gravity rather than the
resistance of the soil, we should take ¢, ~ v gh, and then from Eq. (2.3) we obtain

E = Kpgh[0.5(1 + n?)1s".

If the depth h tends to zero, then m, —; a contact explosion corresponds to a hydrodynamic dipole with mo-
ment M = mgh, proportional to the charge energy.

3. Planar Case. As is well known, in the planar case one can introduce the complex potential w(z) =
@ + 1. For the problem analogous to the one congidered above (infinitely long and thin explosive charge), this
potential has the form

w(z) = (m/2mn) In Wz + Ai)/(z — Ai)]. (3.1)

Separating the real and imaginary components, we have

U O ,

2k —h (3.2)
11)} = (m/2m) arctg [2hz/(z® + y* — P3)]. . (3.3)

¢ = (m/4m) In

On the free surface at y = 0 the velocities are directed vertically upward and have the form

vz) —= mh/in(z® + 1?1

Equating this expression to the gquantity cx, we obtain
m=gqe (1 -+ n?), n=z./h (3.4)

Here x4 is the coordinate on the free surface at which v = cy, and n is the ejection index. The quantity m is
related to the energy expended per unit length E by an expression analogous to Eq. (2.2):

m = kE[(pcgh), k= const. (3.5)

The conclusions for the planar case are obviously the same as in the case of axial symmetry. For an infinitely
deep charge the source intensity vanishes, while for a contact explosion (h —~ 0) the charge action can be sim-
ulated by a hydrodynamic dipole with moment M = mh ~ E.

By substituting Eq. (3.5) in Eq, (3.4) we obtain a computation equation for explosion of a line charge with
ejection:
E = Kpcih? (1 -+ n?), K = const. (3.6)

It is of interest that Egs. (2.3) and (3.6) can be obtained from other considerations [10]. Equation (3.3), re-
written in the form

(2 — %h) + 3> = B 4 #¥), = ctg (2mp/m), (3.7)

defines a family of current lines. One of these lines, passing through the point x, =nh, y = 0 can be interpre-
ted as the boundary of the ''true'’ ejection region (in contrast to the ''visible' boundary which is finally pro-
duced by slippage or collapse of the boundaries). The parameter w, which determines this boundary, is re~
lated to the ejection index n by the expression » = (n? — 1)/2n. In the past a so~called hard liquid model (HLM)
was proposed [2] and developed [5]. In this model the medium was considered as an ideal incompressible
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liquid in a finite region surrounding the charge, limited by a flow line along which the velocity was constant and
equal to c¢,. The problem of explosion of a line charge with ejection was considered in the HLM in [11]. The
form of the ejection region obtained therein is, generally speaking, similar to the circle described by Eq. (3.7).
Since we are always concerned here with a qualitative model of the explosive action, it is obvious that in a
number of cases the approach described above is possible, This variant of the incompressibility approach is
sometimes called the liquid model (LM).

4, Effect of a Hard Bottom. It is well known that for an explosion on a rigid base the mechanical action
of the explosion in the half space is equivalent to that of a charge of twice the energy in a full space, We must
consider the situation in which a layer of soil lies upon the rigid base. In particular, we must find the effect on
the dimensions of the ejection cone in comparison to an explosion at the same depth in an unbounded halfspace,
We will consider this problem using the planar case and the liquid model. The flow region in the physical plane
is depicted in Fig. 1. We will introduce the dimensionless variables z = z/h, W = w/¥,, where h is the layer
thickness, ¥, is half of the liquid flow from the source, located at point A; (we will omit the bar in the future).
We must determine the complex flow potential and the velocity field. The problem is solved by the conformal
mapping method. The flow regions in the planes w and z; = —ch 7w are shown in Fig. 2a, b. We then introduce
the functions

= In (dw/dz), 7, = exp [2(L + mi/2)].

The flow regions are shown in Fig. 3a, b. Mapping z, into z,; with the corresponding points A, and A we have
7y == (2, — VH2)/(V¥2).
Here v is a parameter equal to the velocity at point A, After transformations we obtain the equation
dw/dz = vsh(nuw/2).
The solution of this equation satisfying the condition w=1 at z =0 is
In th(nw/4) = (7/2)(i — vs).

The parameter v is determined from the following condition: as z— —i, w — -~ ln th(nw/4) — =i, Hence
v =1
Transforming to dimensionless variables, after transformations we obiain

—qz/2h .

w (2) = (2hy/m) In %ZMELL‘

et ¢0:m/2, UZI[)O/}L. (4.1)

We compare this expression to the potential wy(z) in the case of absence of a rigid base, as defined by Eq. (3.1)
wy(5) = (bo/7) Inl(z + hi)(z — hi)l, %y = mi2, v, = Dpy/nh. (4.2)
The presence of the rigid base increases the velocity at the epicenter by a factor of /2 times,

If we take z =—hi + ¢, } 8' <« 1 and expand Egs. (4.1), (4.2) for small &, we obtain
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Thus, in the close vicinity of the source the presence of the solid wall causes a doubling of the power. From
Egs. (4.1), (4.2) we define the corregponding velocity fields

dw/dz = — iyt ch %2—7 dw,/dz = — 2ipoh/m (2% 4 kP,

and in particular, on the free surface

(e) = po/meh g, vy (2) == 2k (@ + I).

Equating these expressions to the value of the critical velocity ¢, and introducing the ejection index n = x4/h,
we obtain
- —
n= (2/m) In [o/exh + V [bofea)i—1], ny= V 2pglncsh — 1.

The dependences of n and ny upon the dimensionless quantity ¢,/rcxh are shown in Fig. 4. It is evident that in
the presence of a rigid base the ejection index increases somewhat for n < 1.5. At n> 1.5 the rigid base de-
creases the dimensions of the material ejected.

From Eq, (4.1), separating the imaginary component, we have an expression for the flow function

/2h
P = (2¢,/m) arctg ______c;;ls ((::i/ /2h)) .

Hence for the current lines passing through the point x, = nh, y = 0, we have the expression

sh (nz/2h)
sh (mn/2) "

cos (ny/2h) =

Figure 5 ghows flow lines for n = 1, 2, 3 (curves 1-3) and the flow lines of Eq. (3.7) for n = 1.5, 2,5, 3,
corresponding to an explosion without a rigid base (dashed lines).

5. Contact Explosion in the Presence of a Rigid Base. As has been shown above, within the hydrodynamic
model a contact explosion is described by a dipole, If the charge is located at the point z = 0, then the com-
plex potential has the form w(z) = Mi/(2rz). The dipole axis is directed into the depths of the medium, down-
ward in the given case, and the moment is proportional to the explosion energy: M = const E/ peﬁ.

Now let there be a rigid base located at z =—hi. The velocity potential in this case can be obtained by the
method of reflections from the rigid base and free surface. Upon reflection from the rigid wall the direction of
the dipole axis reverses, while it remains the same upon reflection from the free surface. An infinite number
of reflections produces the following expression for the potential:

w = (Mi/2) [1/5 + (2283 D) (— DK+ 'z2/4h2)].
h=1
Using the relationship of [12],
200/(07* - e~ 7%) = 1z + 22 gl (— DR + 22),

we have* » |
‘wlz) = (M i/lm)(‘sha'cz/Qh)—I

-Separating the imaginary component here, we obtain an expression for the flow function

*A similar result was obtained by A. V. Rubinskii in his candidate's dissertation, '"Application of the pulsed-
hydrodynamic model in the problem of explosion boundary penetration,'' Kazan (1981).
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P =(M/4x) (sin2 _“2% + sh? _;r%)ﬂ/z

and an equation for the flow line passing through the point x4 =nh, y = 0:
sin?(niy/2k) = sh*(na/2) — sh*(wz/2h).

No graph of the flow line will be presented for this case. It is important to note the following in this case. The
new interpretation of the hydrodynamic parameters characterizing the sources and dipoles proposed in Secs.
1 and 2, allows us to avoid consideration of the paradoxes related to infinite energy. In the case of a contact
explosion the energy is infinite as a consequence of the singularity of z ! at the origin.

Returning to the problem of the effect of a rigid base, we arrive at the conclusion that hydrodynamic
theory predicts a reduction in the size of the ejected region (with the possible exception of values of n < 1,5).
A similar result was obtained in the HLM in {8]. Table 1, containing experimental data (which was presented
to the author by N. A, Trufanov), confirms this conclusion. The experiments were performed in dry sand with
sections of detonating cable =~ 1 m in length,

The rigid base was in the form of a reinforced concrete plate, located at a depth of 6 cm. S, denotes the
area of the explosion cavity cross section in the absence of the rigid base, while S is the same value with the
base,.

6, Charge with Finite Cross Section. Let an infinitely long cylindrical charge of radius r; be located at
a distance h from the free surface (Fig. 6a). On the charge surface the potential ¢ = ~P/p, while on the free
surface ¢ = 0. We must find the flow potential and velocity field.

We conformally map the flow region in the plane z into a circular ring 1= |¢| = R in the plane ¢ (Fig.
6b). This mapping is accomplished with the expressions

L= R(z4+bi)E—bi), b=V —r H:(‘Vh—{—ro‘—{—l/h—ro)/(lfh—}—roﬁlfh~r0). (6.1)

The boundary conditions for the complex potential wy () = w(z ()] have the form
Re w; = —Plp, |f| =1, Rew, = 0, |{| = R.
Under these conditions the function w, is uniquely defined:
wy(8) = (Plp)[(ln T)/In R — 11]. (6.2)

The velocity field in the plane z is defined by the expression dw/dz = (dw,/d¢)(d¢/dz) =— 2Pbi/p(z® + b) In R.
In particular, on the free surface at y = 0

v(z) = 2Pblp(z* + b In R, (6.3)

The width of the ejected cone 2xx is defined by the equality of the soil particle velocity to c,. Denoting by
n= x*/h the ejection index, from Eq. (6.3) with consideration of Eq. (6.1) we have

P— (/2 peshIn R(1 4 n? — %2 (1 —F7%) 7, (6.4)

where h = h/r0 is the relative depth of the charge location. This expression can be changed in form if we intro-
duce the dimensionless quantities

E* = Z*/ro, p = P/pc*ro-
Then from Eq. (6.4) we have
2¥= (P/ln R) (I — 12— k21, h=1. (6.5)

we will now consider the case of a contact charge. Let the center of the charge with radius r, be located
at a distance —h from the free surface. The contact line is an arc of a circle intersecting the abscissa at the
points *] (Fig. 7). The solution method is similar to the previous case: we map the semiplane with protruding
segment into a semiplane [13], On the segment +! the value of the potential ¢ =—P/p is specified, while out-
side this segment the potential is equal to zero. The solution is given by a Schwartz integral [13]. Finally we
obtain

“w(z) = [Plp (m — a)]1n zii, (6.6)

where « is the angle between the arc of the circle and the x axis. The velocity distribution on the free surface
is given by the expression
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v(x) = 2PU[p(n — a)(z? — I2)].

Equating this velocity to the critical velocity cx, after transformations we obtain
2 =Plla— )L =R 41 =0 12h>—1, (6.7)

where Xy = Xx/Ty; Xx is the coordinate of the ejected material edge; h = h/r,; P= 2P/(pcxr;). For a charge
submerged by its own radius, Egs. (6.2), (6.5), as well as Egs. (6.6), (6.7) give the same results w(z) =
~2iPr,/pz, X§ = P,

Thus, Eqgs. (6.5), (6.7), and (6.2) give the dependence of crater width on depth of charge location over
the entire range of variation of the latter, Figure 8 shows the dependence of X4 on h assuming that the quan-
tity P is constant (P = 100).

For a contact explosion in the h range from —1 to +1 this assumption is quite justifiable, since the action
time of the detonation products is determined by the time required to expell the explosion products into the
atmosphere, which changes insignificantly over this range for charges of fixed radius, In the general case, as
follows from the above, for a contact explosion (]Ti l = 1) P = const E,

In order to obtain the relationship between the energy E and the pulse pressure P, we substitute Eq.
(6.1) in Eq. (6.2):
w(z) = (P/plnR)In{(z +biY(z—bi)], b= Vi — ro
and equate the expression obtained to the potential of a point source (3.1) for h » rj, whence we obtain for the
source power the expression m = 27P/(p In R). Thus, and from Eq. (3.5) we obtain
“P=Fk(Elcyk)In R, k= const.’
Substituting this expression in Eq. (6.5), we obtain an expression for the half-width of the crater xx in terms
of the linear energy density E: ‘
2 = (kB/pclry) (1 — B )* = (0 — ). (6.8)
The values of h and h at which %, = 0 will be termed the camouflet depth and denoted by the subscript ¢, Tak-
ing h > 1 in Eq. (6.8) and neglecting the unity term in comparison to h?, we have
B =hE—1, zi=hi-h (6.9)
It is remarkable that these simple relationships can also be obtained, as noted above, from other considera-
tions [10, 14]7.

We will assume that the edge of the ejection region is defined by the intersection of the free surface,
i.e., the x axis, with a circle of radius Rg. By Rgq we understand the radius of the destruction zone, where
ejection of fragments of the medium beyond the limits of the ejection region is possible. We assume further
that Rq is independent of the charge location depth. Then from Fig. 9 we can obtain Eq. (6.9) by replacement
of Rq by hg, which has obvious physical meaning. Further from similarity principles we obtain

he = Ry = Kyrg = Kure = K,E12,

where ro is the radius of the camouflet cavity; and K;, Ky K3 are constants, We then obtain a computation
‘equation of the form of Eq. (2.3). in particular,

g = (npy/Kh*(L +n?), (6.10)
where py, is the explosive density, q is the explosive mass per unit length of the charge.

Analogous considerations for the case of a concentrated spherical charge [10, 14] lead to expressions of
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TABLE 1

h, cm 0 2 4 1 6

So, cm?

57 |- 132 | 194 . 203

S, emt 46 I 110 I 167 | 167

It should be noted that Egs. (2.3), (3.6), (6.10), obtained theoretically, are approximate, as is Bores-
kov's empirical expression (2.4). They are valid for the cases typical of practical explosive use (n = 1.5-2.5
for natural soils, n = 3-4 for finely dispersed dry laboratory sand). Some methods of introducing semiempiri-
cal corrections were described in [14].

The author thanks N, B, I'inskii and A, V. Potashev for reading the manuscript and a number of useful
remarks,
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